Epidemic Spreading in Geometric Network with Mobile Agents
نویسندگان
چکیده
منابع مشابه
Traffic-driven epidemic spreading on networks of mobile agents
The question as to how traffic or transportation processes on complex networks can shape the dynamics of epidemic spreading is of great interest for a number of areas. We study traffic-driven epidemic spreading on networks of mobile agents by incorporating two routing strategies: random and greedy. We find that for the case of infinite agent delivery capacity, increasing the moving velocity has...
متن کاملGeometric Network Design with Selfish Agents
We study a geometric version of a simple non-cooperative network creation game introduced in [2], assuming Euclidean edge costs on the plane. The price of anarchy in such geometric games with k players is Θ(k). Hence, we consider the task of minimizing players incentives to deviate from a payment scheme, purchasing the minimum cost network. In contrast to general games, in small geometric games...
متن کاملEpidemic spreading induced by diversity of agents' mobility.
In this paper, we study the impact of the preference of an individual for public transport on the spread of infectious disease, through a quantity known as the public mobility. Our theoretical and numerical results based on a constructed model reveal that if the average public mobility of the agents is fixed, an increase in the diversity of the agents' public mobility reduces the epidemic thres...
متن کاملEpidemic spreading in a scale-free network of regular lattices
The susceptible-infected-susceptible (SIS) epidemics in a scale-free network in which each node is a square lattice itself is investigated through large-scale computer simulations. The model combines a local contact process among individuals in a node (or city) with stochastic long-range infections due to people traveling between cities interconnected by the national transportation scale-free n...
متن کاملTemporal Percolation of the Susceptible Network in an Epidemic Spreading
In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Polonica B
سال: 2020
ISSN: 0587-4254,1509-5770
DOI: 10.5506/aphyspolb.51.1853